Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(12): 13603-13611, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559939

RESUMEN

This paper introduces a unique and novel method for synthesizing thienyl chalcones using iron oxide nanoparticles (FeONPs) as a heterogeneous catalyst. It stands out as a rare example in the literature for the synthesis of these chalcones from 1,3-diketones and various aromatic aldehydes. The magnetic FeONPs employed as the catalyst bring several advantages, including their efficiency, affordability, and ecofriendly nature, making them an attractive choice for producing thiophene chalcones. One noteworthy aspect of this methodology is the utilization of mild reaction conditions, which greatly simplify the operational aspects of the reaction. Synthesized chalcones were confirmed through the application of various techniques, proton-NMR, 13C NMR, mass spectrometry, and single-crystal X-ray diffraction analysis. These analyses provide valuable insights into the chemical compositions and structural characteristics of the synthesized compounds. Significantly, this methodology is reported for the first time in the literature, indicating its novelty and contribution to the field of chalcone synthesis.

2.
Environ Res ; 251(Pt 2): 118698, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518906

RESUMEN

Sixty-eight morphologically distinct isolates of marine actinomycetes were derived from seashore, mangrove, and saltpan ecosystems located between the Palk Strait and Gulf of Mannar region, Bay of Bengal, Tamilnadu. Twenty-five (36.8%) isolates exhibited anti-mycotic activity against Candida albicans and Cryptococcus neoformans in preliminary screening, and 4 isolates with prominent activity were identified and designated at the genus level as Streptomyces sp. VPTS3-I, Streptomyces sp. VPTS3-2, Streptomyces sp. VPTSA1-4 and Streptomyces sp. VPTSA1-8. All the potential antagonistic isolates were further characterized with phenotypic and genotypic properties including 16S rRNA gene sequencing and identified species level as Streptomyces afghaniensis VPTS3-1, S. matensis VPTS3-2, S. tuirus VPTSA1-4 and S. griseus VPTSA1-8. In addition, the active fractions from the potential antagonistic streptomycetes were extracted with organic solvents by shake flask culture method and the anti-mycotic efficacies were evaluated. The optimization parameters for the production of the anti-mycotic compound were found to be pH between 7 and 8, the temperature at 30ᵒC, the salinity of 2%, incubation of 9 days, and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch casein medium.

3.
Sci Rep ; 14(1): 3608, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351100

RESUMEN

Photocatalysts have developed into a successful strategy for degrading synthetic and organic toxins, such as chemicals and dyes, in wastewater. In this study, graphene oxide was reduced at different temperatures and used for degrading indigo carmine and neutral red dyes. The wide surface areas, strong adsorption sites, and oxygen functionalities of reduced graphene oxide (rGO) at 250 °C (rGO-250) produced more photocatalytic degradation efficiency and adsorption percentage. The catalyst dosage, initial dye concentration, solution pH and recyclability were all used to optimize the photocatalytic activity of rGO-250. This research presents a capable nano-adsorbent photocatalyst for the efficient degradation of organic dyes. GO and rGOs were also investigated for carbon dioxide (CO2) absorption properties. Results showed that rGO-250 has better CO2 adsorption properties than other rGOs. Overall, it was observed that rGO-250 has better photocatalytic and CO2 adsorption capabilities compared to graphene oxide reduced at different temperatures.

4.
Food Chem ; 444: 138637, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38341918

RESUMEN

The use of Chloramphenicol (CAP), a potent antibiotic with broad-spectrum capabilities in food-producing animals has been restricted by the European Union and several other countries due to its severe side effects. Thus, CAP must be detected quickly and sensitively. In this investigation, the preparation of SrTiO3 nanoparticles was carried out utilizing a hydrothermal technique. The as-synthesized strontium titanate was decorated on the graphene oxide (SrTiO3/GO) using an ultrasonication method. An electrochemical sensor was developed by employing a modified electrode consisting of SrTiO3/GO, which can accurately detect CAP in food samples. The synergistic effect of SrTiO3 and GO could improve the peak current response. Remarkably, the SrTiO3/GO-modified glassy carbon electrode has a LOD and sensitivity of 6.08 µM nM and 2.771 µA·µM-1·cm-2, respectively. This modified electrode was evaluated in food samples and had an outstanding reaction with a high percentage of recovery, which makes it a potential electrocatalyst for CAP detection.


Asunto(s)
Grafito , Miel , Nanopartículas del Metal , Animales , Cloranfenicol/análisis , Miel/análisis , Grafito/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección
5.
Environ Pollut ; 345: 123418, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307243

RESUMEN

Measuring the concentration of organochlorine pesticides (OCPs) in agriculture has engaged significant awareness for healthcare investigation since OCPs are harmful to many physiological processes. Excessive usage of these compounds can result in major contamination of the environment and food supply chains. As a result, more accurate and rapid ways to detect pesticide residues in food are required. In this work, we have portrayed the surface-engineered fluorescent blue emissive-carbon dot (B-CD) with a high quantum yield (49.3 %) via the hydrothermal method for fluorescent sensing of OCPs on real samples. The amine group functionalities of carbon dots have supported the direct coordination with -Cl and -OH groups of HEP, ENS, CDF and 2,4-DPAC for the sensitive detection of OCPs, by switching in the fluorescent intensity of B-CD. The functional group of OCPs exhibits a variety of binding interactions with B-CD to contribute a complex formation, which leads to static quenching via an insubstantial restricted electron transfer process. The synthesized carbon dots exhibit individuality in binding nature towards different OCPs. Fluorescence studies help to distinguish the target OCPs and their low detection limits (LODs) were 0.002, 0.099, 0.16 and 0.082 µM for Heptachlor (HEP - turn "on"), Endosulfan (ENS), Chlordimeform (CDF) and 2,4-dichlorophenoxyacetic acid (2,4-DPAC - turn "off") OCPs respectively. The real water samples and agriculture food samples were effectively investigated and the OCP toxicity was noted. Thus, the design of the fluorescence sensor is established as an easy and proficient sensing method for detecting OCPs.


Asunto(s)
Clorfenamidina , Hidrocarburos Clorados , Plaguicidas , Carbono , Fluorescencia , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Hidrocarburos Clorados/análisis
6.
ACS Omega ; 9(2): 2568-2577, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250369

RESUMEN

The present study involved the synthesis of La2YCrO6 double perovskites using a sol-gel approach. Additionally, a sonication method was implemented to prepare La2YCrO6 double perovskites decorated on halloysites (La2YCrO6/HLNTs). The La2YCrO6/HLNTs exhibited remarkable conductivity, electrocatalytic activity, and rapid electron transfer. It is imperative to possess these characteristics when overseeing the concurrent identification of Allura red (AR) and acid blue 9 (AB) in food samples. The development of the La2YCrO6/HLNTs was verified through the utilization of diverse approaches for structural and morphological characterization. The electrochemical techniques were employed to evaluate the analytical techniques of La2YCrO6/HLNTs. Impressively, the La2YCrO6/HLNTs demonstrated exceptional sensitivity, yielding the lowest detection limit for AR at 8.99 nM and AB at 5.14 nM. Additionally, the linear concentration range was 10-120 nM (AR and AB). The sensor that was developed exhibited remarkable selectivity, and the feasibility of AR and AB in the food sample was effectively monitored, resulting in satisfactory recoveries.

7.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138165

RESUMEN

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Células HCT116 , Proteína p53 Supresora de Tumor/genética , Survivin/metabolismo , Survivin/farmacología , Survivin/uso terapéutico , Melaninas/metabolismo , Melaninas/farmacología , Melaninas/uso terapéutico , Apoptosis , Proteína X Asociada a bcl-2/genética , Citocromos c/metabolismo , Citocromos c/farmacología , Citocromos c/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Línea Celular Tumoral
8.
ACS Omega ; 8(34): 31060-31070, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37663519

RESUMEN

The present study compares the surface, textural, and catalytic properties of porous silica doped with bimetallic metal ions that was made from rice husk (RH) biomass. Due to the use of a surfactant during the synthesis process, porous RH-silica (RHS) was derived. In situ doping of silver/copper and ruthenium/copper has been achieved via the xerogel and hydrogel formation methods. The prepared catalysts have been analyzed by various methods, such as surface area and narrow pore size distribution, to confirm their porosity. Powder X-ray diffraction, Fourier transform infrared, and electron microscopy examination were further performed for physicochemical characterization of the synthesized materials. Transmission electron microscopy images showed that ruthenium and copper ions were incorporated perfectly, forming a hexagonal mesoporous (MCM-41) texture due to hydrogel formation and the method of preparation. Copper oxide nanoparticles with silver incorporation in RHS form cube-shaped particles for CuO formation on the surface of the silica matrix instead due to the method of preparation. In this case, ruthenium/copper-doped porous silica forms hexagon-shaped particles of RuO formation in the mesoporous matrix. Finally, the acetylation of glycerol using acetic acid on as-prepared catalysts has been studied. The catalytic activity increases with an increase in temperature and optimization of the molar ratio of glycerol and acetic acid. Increases in temperature result in higher selectivity toward triacetin formation instead of the conventional formation of monoacetin. Hence, we compared the surface physicochemical properties, catalytic conversion, and selectivity nature of bimetallic metal (Ru/Cu and Ag/Cu) ions incorporated in RHS prepared by different synthetic routes.

9.
Int J Biol Macromol ; 252: 126205, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562471

RESUMEN

The use of marine waste derived chitosan (CS) for the synthesis of nanomaterials is considered as one of the effective routes for bio-waste management and recovering functional products. Herein, CS capped silver nanoparticles (Ag NPs-CS) with potential anticancer and dye pollutants adoption properties have been synthesized photochemically under direct sunlight. To obtain, CS, shrimp shell waste was subjected to a serious of standard demineralization, deproteinization and deacetylation processes. The electronic absorption peak (400 nm) denoting surface plasmonic resonance of Ag NPs and infrared peaks relevant to CS (3364 cm-1 of OH/NH2, 2932 cm-1 of CH, and 1647 cm-1 of -CO) exhibited peaks confirmed the formation of CS-Ag NPs. Ag NPs-CS exhibited anticancer activity against Human lung adenocarcinoma cell lines (A549), the maximum cell death noticed at the concentration of 20 µg/mL and 70 µg/mL was 20 and 52 %, respectively. An aqueous Ag NPs-CS (100 µg/mL) was degraded ≥95 % of mixed dye target solution (25 mg/mL) containing equal volume of cationic dye (Methylene blue and Rhodamine B) and anionic dye (methyl orange). Therefore, these findings suggest that the shrimp shell waste derived CS can be used for the synthesis of CS-Ag NPs with potential biomedical and environmental applications.


Asunto(s)
Quitosano , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Quitosano/química , Plata/química , Luz Solar , Temperatura
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122988, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321138

RESUMEN

The present study focuses on structural and chemical analyses of N-phenylmorpholine-4-carboxamide benzene-1,2-diamine (PMCBD) using quantum computational methods. The calculated bond angle, length, and dihedral angle between atoms were compared with measured values. The observed and stimulated FT-IR (Fourier Transform Infrared Spectroscopy) spectra parameters for vibrational wavenumbers and their associated PED (Potential Energy Distribution) values in percentage have been obtained from VEDA4 software. The electronic transitions of PMCBD were discussed by TD-SCF/DFT/B3LYP based on the 6-311++G(d,p) basis set with solvents such as chloroform, ethanol, and dimethyl sulfoxide (DMSO) and gas. Density functional computations were used to study the band energy between HOMO and LUMO using the B3LYP/6-311++G(d,p) level. Mulliken analysis and natural population analysis were used for a better understanding of charge levels on different atoms such as N, H and O. The natural bonding orbital (NBO) analysis proved helpful in studying molecular and bond strengths. (NBO). The ESP acquired data on the molecule's size, shape, charge density distribution, and chemical reactivity site. This was done by mapping electron density on the surface with electrostatic potential. Non-linear optical detection of PMCBD was also discussed. Aside from the electron localization function map, state densities are also mapped using Multiwfn software, a wave function analyzer.


Asunto(s)
Benceno , Espectrometría Raman , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Diaminas , Electricidad Estática , Teoría Cuántica , Termodinámica , Vibración , Espectrofotometría Ultravioleta
11.
Int J Biol Macromol ; 245: 125553, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356683

RESUMEN

The COVID-19 pandemic has been a global health crisis for over three years now, with the virus causing widespread illness and death. The urgent need for safe and effective therapeutic drugs has prompted the exploration of alternative medicine systems such as Ayurveda and Siddha. This study focuses on the potential therapeutic properties of the Ayurvedic plant, Mimusops elengi. In silico techniques were employed to analyze the bioactivity of the plant, including target prediction, gene ontology analysis, OMIM analysis, and molecular docking analysis. The results revealed 36 phytocompounds that interacted with 1431 receptors in the human body, and two compounds - hederagenin and quercetin - showed exceptionally high binding affinities toward their corresponding receptors, IL6 and MMP9. These results provide important insight into the potential therapeutic activity of M. elengi and its compounds in combating COVID-19. However, further research and clinical trials are necessary to validate these findings and develop safe and effective drugs. The study highlights the importance of combining traditional medicine with modern scientific methods to find effective treatments for global health challenges.

12.
Saudi J Biol Sci ; 29(5): 3815-3821, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844361

RESUMEN

The major aspects of using plant-derived medications are significantly safer and secure than synthetic ones. The n-hexane seed extract of ayurvedic medicinal plants Myristica fragrans was also utilized as food ingredients have analyzed for phytochemical existence by Gas Chromatography-mass spectrometry (GC-MS). Twenty-three phytoconstituents were identified with elemicin (24.44%) as the major constituent. Lipid peroxidase, catalase and DPPH assays were performed using the isolated elemicin and the results revealed significant antioxidant activity. The antibacterial study revealed that elemicin showed MIC of 31.25 µg/mL against Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi, and 62.5 µg/mL against Klebsiella pneumonia and Staphylococcus aureus. Elemicin exhibited better antifungal activity against Candida tropicalis and Aspergillus flavus than Aspergillus niger, Penicillium chrysogenum and Trichophyton rubrum. The study implies that the elemicin isolated from Myristica fragrans possess promising bioactive properties and can be crucially utilized in the development of therapeutic agents and food preservatives.

13.
Molecules ; 27(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056754

RESUMEN

In this work, new crosslinked pyridinium poly ionic liquid and its magnetite hybrid structured composite were prepared and applied to remove the toxic dye Coomassie Brilliant Blue (CBB-R250) from aqueous solutions. In this respect, vinyl pyridine, maleic anhydride, and dibromo nonane were used to prepare crosslinked quaternized vinyl pyridinium/maleic anhydride ionic liquid (CQVP-MA). Furthermore, a linear copolymer was prepared by the reaction of vinyl pyridine with bromo nonane followed by its copolymerization with maleic anhydride in order to use it as a capping agent for magnetite nanoparticles. The monodisperse MNPs were incorporated into the crosslinked PIL (CQVP-MA) by ultrasonication to prepare CQVP-MA/Fe3O4 composite to facilitate its recovery using an external magnetic field and enhance its adsorption capacity. The chemical structures, thermal stabilities, zeta potential, particle size, EDS, and SEM of the prepared CQVP-MA and CQVP-MA/Fe3O4 were investigated. Adsorption kinetics, isotherms, and mechanisms of CB-R250 elimination from aqueous solutions using CQVP-MA and CQVP-MA/Fe3O4 were also studied, and the results revealed that the pseudo second-order kinetic model and the Langmuir isotherm model were the most suitable to describe the CBB adsorption from an aqueous solution. The adsorption capacities of CQVP-MA and CQVP-MA/Fe3O4 were found to be 1040 and 1198, respectively, which are more than those for previously reported material in the literature with reasonable stability for five cycles.

14.
Chemosphere ; 287(Pt 2): 132153, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34500335

RESUMEN

In the present work, we have synthesized a novel 2D GNR-CoB composite and was applied it for electrochemical sensing and photocatalytic degradation of the malachite green (MG). The physicochemical properties of the 2D GNR-CoB were analyzed using X-ray diffraction, Transmission electron microscopy, Energy dispersive X-ray diffraction which depicts the morphological and crystalline nature of the prepared composite. The pencil graphite electrode modified with 2D GNR-CoB composite showed excellent electrochemical response for MG detection with a LOD of 1.92 nM, linear range of 25-350 nM with a high sensitivity of 1.714 µA µM-1 cm-2. Besides, the 2D GNR-CoB modified PGE exhibited good recovery for the detection of MG in real samples such as green peas and lady's fingers. Furthermore, the 2D GNR-CoB modified electrode showed excellent photocatalytic activity for the degradation of MG. It suggests that under visible light, GNR-CoB material generates superoxide (·O2-) and hydroxyl (·OH) radicals for MG degradation. The prepared composite showed an efficiency of 91.28% towards the degradation of MG. Based on the experimental analysis and density functional theory calculations, a photocatalytic degradation mechanism pathway for MG is proposed. A quantitative structure-activity relationship study was used to examine the toxicity of the degradation intermediates.


Asunto(s)
Grafito , Nanocompuestos , Técnicas Electroquímicas , Electrodos , Humanos , Colorantes de Rosanilina
15.
Micromachines (Basel) ; 12(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832836

RESUMEN

Methane is a greenhouse gas which poses a great threat to life on earth as its emissions directly contribute to global warming and methane has a 28-fold higher warming potential over that of carbon dioxide. Ruminants have been identified as a major source of methane emission as a result of methanogenesis by their respective gut microbiomes. Various plants produce highly bioactive compounds which can be investigated to find a potential inhibitor of methyl-coenzyme M reductase (the target protein for methanogenesis). To speed up the process and to limit the use of laboratory resources, the present study uses an in-silico molecular docking approach to explore the anti-methanogenic properties of phytochemicals from Cymbopogon citratus, Origanum vulgare, Lavandula officinalis, Cinnamomum zeylanicum, Piper betle, Cuminum cyminum, Ocimum gratissimum, Salvia sclarea, Allium sativum, Rosmarinus officinalis and Thymus vulgaris. A total of 168 compounds from 11 plants were virtually screened. Finally, 25 scrutinized compounds were evaluated against methyl-coenzyme M reductase (MCR) protein using the AutoDock 4.0 program. In conclusion, the study identified 21 out of 25 compounds against inhibition of the MCR protein. Particularly, five compounds: rosmarinic acid (-10.71 kcal/mol), biotin (-9.38 kcal/mol), α-cadinol (-8.16 kcal/mol), (3R,3aS,6R,6aR)-3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one (-12.21 kcal/mol), and 2,4,7,9-tetramethyl-5decyn4,7diol (-9.02 kcal/mol) showed higher binding energy towards the MCR protein. In turn, these compounds have potential utility as rumen methanogenic inhibitors in the proposed methane inhibitor program. Ultimately, molecular dynamics simulations of rosmarinic acid and (3R,3aS,6R,6aR)-3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one yielded the best possible interaction and stability with the active site of 5A8K protein for 20 ns.

16.
ACS Omega ; 6(51): 35538-35547, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984285

RESUMEN

Mesenchymal stromal cells (MSCs) were isolated from Decidua Basalis (DB) and studied for their final cellular product measures, such as safety, purity, quality, quantity, and integrity that are ascribed as cellular products. This research aimed to isolate MSCs for expansion under the clinical scale level with potency, secretion of cytokines, growth factors secreted by DB-MSCs, and their role in wound healing. Placentas isolated from DB were expanded up to the 10th passage, and their characteristics were assessed by phenotypic characterization using a flow cytometer and analyzed for trilineage differentiation by cytochemical staining. Growth factors (GF), interleukins (IL), chemokines, and tissue inhibitors of metalloproteinases (TIMP) were measured with enzyme-linked immunosorbent assays. The harvested cells from the placenta yield 1.63-2.45 × 104cells/cm2 at P(0), 3.66-5.31 × 104cells/cm2 at P(1), 4.01-5.47 × 104cells/cm2 at P(2), and 3.94-5.60 × 104cells/cm2 at P(10) accordingly; up to 4.74 × 109 P(2) DB-MSCs were harvested within 9-11 days. The viability of the freshly harvested cells was greater than 90% in all cases. It is able to differentiate into chondrocytes, adipocytes, and osteogenic cells, proving their ability to differentiate into a trilineage. Thus, this study put an insight into a secure and conventional approach toward their ability to differentiate into multiple lineages and secrete factors related to immune regulation, making DB-MSCs a potential source in various therapeutic applications.

17.
Anal Chim Acta ; 1137: 181-190, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33153601

RESUMEN

This work proposes the conventional sonochemical synthesis of nanoparticles of tin (IV) oxide on reduced graphene oxide (rGOS@SnO2) influencing the formation of a composite with enhanced properties. The combination of SnO2 nanoparticles with rGOS weakens the accumulation in layered structures of the latter system, which leads to better exposure of SnO2 active sites and thus increases the conductivity of rGOS@SnO2 composite. This validates the improved electro-catalytic activity of the composite based on previous reports for its successful utilization in the electrochemical determination of toxic contaminants. The quantitative determination of mercury ions, through the use of the electrochemical sensor based on rGOS@SnO2 manifests several advantages such as simple operator, promptness, cost effectiveness and time independency when compared to other traditional techniques. The fabricated sensor displays two wide linear responses in the range of 0.25-705.3 µM for mercury ions, with a rapid response time about 1 s, and with a high sensitivity of 10.18 µA µM-1 cm-2 under optimized conditions. The accumulation of traces of mercury in the bodies of fish in the marine eco system marks the significance of its detection in real samples. The satisfactory results of the proposed sensor establish the supreme efficacy of layered nanomaterials in conjunction with nanoparticles for the simple, rapid and efficient detection of pollutants in food and biological samples.


Asunto(s)
Grafito , Mercurio , Nanopartículas , Neoplasias , Animales , Electrodos , Humanos , Sustento , Compuestos de Estaño
18.
ACS Omega ; 5(25): 15028-15038, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637776

RESUMEN

Porous-activated carbon (PAC) materials have been playing a vital role in meeting the challenges of the ever-increasing demand for alternative clean and sustainable energy technologies. In the present scenario, a facile approach is suggested to produce hierarchical PAC at different activation temperatures in the range of 600 to 900 °C by using cow dung (CD) waste as a precursor, and H3PO4 is adopted as the nonconventional activating agent to obtain large surface area values. The as-prepared cow dung-based PAC (CDPAC) is graphitic in nature with mixed micro- and mesoporous textures. High-resolution scanning electron microscopy depicts the morphology of CDPAC as nanoporous structures with a uniform arrangement. High-resolution transmission electron microscopy reveals spherical carbon dense nanoparticles with dense tiny spherical carbon particles. N2 adsorption-desorption isotherms show a very high specific surface area of 2457 m2/g for the CDPAC 9 (CD 9) sample with a large pore volume of 1.965 cm3/g. Electrochemical measurements of the CD 9 sample show a good specific capacitance (C s) of 347 F/g at a lower scan rate (5 mV/s) with improved cyclic stability, which is run up to 5000 cycles at a low current density (0.5 A/g). Hence, we choose an activated carbon prepared at 900 °C to fabricate the modified electrode material. In this regard, a flexible type symmetric supercapacitor device was fabricated, and the electrochemical test results show a supercapacitance value (C s) of 208 F/g.

19.
J Photochem Photobiol B ; 165: 202-212, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27816642

RESUMEN

Nanostructured thin films of Gallium doped Zinc oxide (GZO) with nanodisk/nanorods and nanoflower morphologies are fabricated on a piezoelectric substrate. Pure wurtzite phase of GZO with nanostructure morphologies were prepared by a one-step spin coating process, followed by hydrothermal treatment. A non-ionic polymer (polyethylene imine) was used as a structure assisting agent to selectively form the nanodisks or nanoflowers depending on the reaction conditions. The morphology, nanostructure, and physicochemical properties of GZO were studied by X-ray diffraction, scanning electron microscopy (SEM) and Raman spectroscopy. The thicknesses and lengths of the individual GZO nanodisks were measured by FE-SEM. The fine nanodisk and nanoflower structures are obtained. Green fluorescent proteins were immobilised on the as-synthesised GZO nanostructured materials by dip coating. Atomic force microscopy was used to study the surface roughness of the GZO nanodisks, nanoflowers and nanorods. Photoluminescence techniques were used to study the GZO nanodisk structural defects and its optical properties. Fluorescence spectrometry analyses confirmed the binding of green fluorescent protein on the GZO nanostructure surface. The biocompatibility study of GZO nanostructures have been studied using Human HT-29 colon cell lines. Trace levels of green florescent protein immobilised on Ga-doped ZnO nanodisks and nanoflowers showed good activity for UV light sensing.


Asunto(s)
Galio/química , Proteínas Fluorescentes Verdes/química , Nanopartículas del Metal/química , Óxido de Zinc/química , Luminiscencia , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...